skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dachwald, Bernd"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate,234U,238U, δ11B,87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted asend‐memberbrines. The englacial brine had higher Clconcentrations than the Blood Falls end‐member outflow; however, other constituents were similar. The isotope data indicate that the water in the brine is derived from glacier melt. The H4SiO4concentrations and U and Sr isotope suggest a high degree of chemical weathering products. The brine has a low N:P ratio of ~7.2 with most of the dissolved inorganic nitrogen in the form of NH4+. Dissolved organic carbon concentrations are similar to end‐member outflow values. Our results provide strong evidence that the original source of solutes in the brine was ancient seawater, which has been modified with the addition of chemical weathering products. 
    more » « less